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Abstract-For an isotropic incompressible hyperelastic Varga material the plane stress (membrane) theory of
thin sheets is employed to formulate the load-deflection relation for small superimposed radial deflections of a
cylindrical rubber bush which is precompressed by a large uniform radial inflation, The Varga material is a
prototype for rubber over a limited range of deformation and the load-deflection relation obtained provides an
extreme lower bound to the practical situation. Moreover this relation complements existing results for
cylindrical rubber bushes so that now at least some assessment can be made of the effect of precompression
on the radial mode of deflection for bushes of finite length. Typical numerical values are given and are
contrasted with corresponding values obtained from existing plane strain radialload-deflection relations for
long precompressed cylindrical rubber bush mountings.

1. INTRODUCTION

Rubber bush mountings, consisting of cylindrical rubber tubes bonded on their outer and inner
curved surfaces to effectively rigid metal cylinders, are widely used as engineering components.
The radial mode of deflection for such bushes is that produced by fixing the outer cylinder and
moving the inner cylinder uniformly along its length in a radial direction. For initially unstressed
bushes of finite length the radialload-deflection relation is given in [1). In situations where large
radial loads are expected, the rubber is precompressed on assembly in its housing. Plane strain
radial load-deflection relations for precompressed bushes which are sufficiently long so that
end-effects can be ignored are given in [2,3] for the neo-Hookean and general isotropic
incompressible hyperelastic material respectively. In this paper for a particular elastic material
which we refer to as the Varga material we obtain the plane stress radial load-deflection relation
for precompressed bushes. This relation gives an extreme lower bound to the practical situation
and together with [1-3] provides some theoretical basis from which an assessment could be made
of the likely behaviour of precompressed bushes of finite length.

The results obtained in this paper apply to an isotropic incompressible hyperelastic material
which has strain-energy function I given by

(1.1)

where JL is the usual infinitesimal shear modulus and Ai (i = 1,2,3) are the principal stretches.
This strain-energy function was originally proposed by Varga[4] (page 102) for natural rubber
vulcanisates and later by Dickie and Smith(5) for styrene-butadiene vulcanisates. They conclude
that such a strain-energy function is a valid prototype for these materials provided the maximum
principal stretch does not exceed 2. Indeed, within this range of deformation, there are situations
(for example, in simple extension) for which the Varga material gives a closer approximation to
experimental results than does the neo-Hookean material. Over this limited range of deformation
we would therefore expect the results obtained for the Varga material to be physically
meaningful and moreover to be in reasonable agreement with the corresponding results for the
neo-Hookean material.

Rubber bushes are effectively precompressed by forcing the rubber tube over the inner
cylinder and then forcing the outer cylinder over the rubber. The rubber is either "cold" bonded
to the metal cylinders or, for situations where axial loads are not expected to be large, is not
bonded at all. For no bonding we assume that the initial compression is sufficiently large so as to
prevent slipping between the rubber and the metal cylinders, If we assume that this initial
compression can be approximated by a uniform radial inflation then in general for the plane
stress (membrane) theory of isotropic incompressible hyperelastic materials we are required to
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solve a second order nonlinear ordinary differential equation. For the neo-Hookean material
this equation has been solved numerically (see for example [6], page 143; [7] and [8]. The main
reason for considering the strain-energy function (1.1) is that for this material the second order
nonlinear differential equation can be integrated and moreover closed form solutions can be
obtained for the small radial deflection which is superimposed upon the initial compression.

In the following section we give the basic equations for the plane stress theory of isotropic
incompressible hyperelastic materials. The second order nonlinear ordinary differential equation
for the uniform radial inflation is given in Section 3 for the general isotropic incompressible
hyperelastic material. For the neo-Hookean material we note that this equation can be reduced to
a first order Abel equation (Murphy[9], page 23). This reduction has not been given previously and
since the Abel equation obtained is not one of the standard types which can be integrated it would
appear that the uniform radial inflation for the neo-Hookean material cannot be expressed in
terms of elementary functions. For the Varga material we show that the solution is readily
obtained.

In Section 4 we give the governing system of ordinary differential equations for the small
radial deformation which is superimposed upon the initial compression. For the general isotropic
incompressible hyperelastic material this fourth order system of non-homogeneous linear
equations is shown to admit two simple solutions and a first integral. These solutions are
consequences of the invariance of the governing equations under translations while the first
integral is derived by considering the resultant force acting on a cylinder which was given
originally by a right circular cylinder. Evidently in principle these three results are sufficient to
reduce the fourth order system to one of first order. However for the general material the
governing fourth order system is not readily uncoupled. For the Varga material we show in
Section 5 that the system can be solved completely and we give closed form solutions. In Section
6 we use these solutions to formulate the radial load-deflection relation for this material. In the
limit of no precompression the result obtained reduces to the linear plane stress radial
load-deflection relation. Typical numerical values are given in Section 7.

2. BASIC EQUATIONS FOR THE PLANE STRESS THEORY OF THIN SHEETS OF
ISOTROPIC INCOMPRESSIBLE HYPERELASTIC MATERIALS

In this section we give the basic equations for the membrane theory of thin plane sheets of
uniform original thickness 2ho• The final equilibrium equations in the form of (2.12) or (2.17) have
not been given previously and so we give a brief derivation. This is most easily done in terms of
general plane curvilinear coordinates.

For material coordinates X K (K = 1,2,3) and spatial coordinates Xi (i = 1,2,3) we consider,
as is usual in plane stress theory, the deformation

(2.1)

where X A (A = 1, 2) and x a (a = 1, 2) are general plane curvilinear coordinates and X 3 and x 3 are
rectangular cartesian coordinates. If GAB and gab are the metric tensors of the coordinates X A

and x a respectively and if

(2.2)

then the deformation (2.1) of an incompressible material satisfies the condition
a(x·,x 2

) I(G)
a(X1, X 2) = 'I g A,

where

a(x \ x2
) ax 1 ax 2 ax 2 ax·

a(x·, X 2
) = axt ax2

- axt axz'

and we have introduced A(XA
) which is defined by

A=A- 1
•

(2.3)

(2.4)

(2.5)
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If we make the usual assumptions of membrane theory (see Green and Adkins [6], page 126)
we can show for an isotropic incompressible hyperelastic material that the Cauchy stress
resultants T"b for the deformation (2.1) are given by

(2.6)

where c- Iab is the inverse Cauchy deformation tensor which is defined by

(2.7)

where semi-colons are used here to denote the total covariant derivative. Also cP and'" are given
by

(2.8)

where !'(I, A) is the strain-energy function and 1= C,,-I". If we use the Euler-C. Neumann
identity

(AX~);A =0,

then by means of the first Piola-Kirchoff stress tensor TR
Ab which is given by

we can show from (2.6) that the equilibrium equations

(2.9)

(2.10)

T'::= 0, (2.11)

become

where VZ is given by

(2.12)

(2.13)

and r~ and r:" are the Christoffel symbols.based on the metric tensors GAB and gab respectively.
We note here that the equilibrium equations (2.12) in rectangular cartesian coordinates are given
by Wong and Shield[7] for the particular case of the neo-Hookean material.

Throughout the remainder of the paper we use material and spatial cylindrical polar
coordinates (R,e, Z) and (r, 8, z) respectively. The deformation (2.1) and the condition of
incompressibility (2.3) become

r = r(R, 8), 8 =8(R, 8), z = A(R, 8)Z, (2.14)

(2.15)

while the invariant I can be shown to be given by

where subscripts denote partial differentiation. From (2.12) we obtain
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(2.17)

where V2 is the usual Laplacian in cylindrical polar coordinates, namely

(2.18)

We note also that using the first Piola-Kirchoff stress tensor given by (2.10) we can show that
the resultant force in the direction 8 = 0, which must be applied to an originally right circular
cylinder R = constant, is given by

rw

F = -2hoJo [t/J(r sin 8)8+ R4>(r cos 8)R] de. (2.19)

3. THE INITIAL DEFORMATION

We suppose that the initial compression of the bush which is originally of inner and outer radii
A and B respectively, is effected by the uniform radial inflation

r = f(R), 8=e, z = A(R)Z, (3.1)

where 1 and A are functions of R only. From (2.15)-(2.17) and (3.1) we obtain

"f' 12

A=if, I=r+ R2'

4>(f"+~-Ib)+4>'1' + t/J' f = 0,

(3.2)

where primes denote differentiation with respect of R. In general these equations constitute a
highly nonlinear second order differential equation for the function I(R). As mentioned in the
introduction this equation for the neo-Hookean material has been solved numerically by a
number of authors. Before considering the Varga material (1.1) it would seem worthwhile noting
that in the case of the neo-Hookean material the nonlinear equation can be reduced to a first order
Abel equation.

For the neo-Hookean material the response coefficients 4> and t/J are given by

4> = IL, (3.3)

where the constant IL is the linear shear modulus. From (3.2h and (3.3) we obtain

If now we make the transformation

(3.4)

A=x"', (3.5)

so that from (3.2), we obtain

[
0 - xy )] '/2

f'= --x- , (3.6)
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then on substituting (3.5) and (3.6) into (3.4) we obtain

Ydy = (l-+6) _(2-+ 6X)Y.
dx x 3 x 2
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(3.7)

This is an Abel equation of the second kind (Murphy[9], page 25) with special solution X-I. It can
be transformed into an Abel equation of the first kind if we take YI = y-I as the dependent
variable. Neither of these Abel equations are of the standard types which can be integrated and
thus an approximate method of solution is probably required. For the problem under considera
tion it is desirable that some analytic expression is obtained for the deformation (3.1) and so we
shall not consider further approximate solutions of (3.7).

For the Varga material the strain-energy function (1.1) in terms of 1 and A is given by

I = 2f.L [(1 +2A)I/2 +A-I - 3],

so that from (2.8) the response coefficients are given by

(3.8)

(3.9)

and thus we have the relation

From (3.2)3 and (3.10) we obtain

But from (3.2)1, (3.2h and (3.9)1 we have rP is given by

(3.10)

(3.11)

(3.12)

and thus from (3.11) and (3.12) we see that A can at most be a constant. Thus from (3.2)1 we see
that the deformation (3.1) for the Varga material becomes

8 =O, (3.13)

where a and 13 are constants.
Thus for the Varga material the uniform radial inflation (3.1) is the same as the plane strain

uniform radial inflation given by Rivlin[1O]. This result is not as unreasonable as it would appear
at first sight. For the neo-Hookean material Wong and Shield [7] have shown that for moderate
deformations of a specific boundary value problem the exact numerical solution of (3.2)1 and (3.4)
can be accurately approximated by the function

(3.14)

where CI and C2 are constants determined by the boundary conditions of f(R). We see from
(3.13)1 that if K = f3/a is small so that we can neglect terms of order K 2 then up to order K we
obtain a function of the form (3.14). Bearing in mind the close behaviour of the neo-Hookean and
Varga theories for deformations with maximum principal stretch less than 2 it is therefore not
unreasonable that (3.13) describes the uniform radial inflation provided of course we restrict our
attention to this range of deformation for which we know the Varga material to be physically
meaningful. If we take (3.13) to describe the initial compression then there is the additional
advantage that the plane stress radial load-deflection relation can be easily contrasted with the
plane strain relations given in [2] and [3].



98 J. M. HILL

Finally in this section we remark that considering the numerical results of Wong and Shield[7]
it is tempting to use (3.14) for the neo-Hookean material in the analysis of the following sections.
However, if we were to do this consistently the final load-deflection relation would only be valid
for deformations which are no larger than those for which the Vagra material is physically
meaningful.

4. GOVERNING SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS FOR
THE SMALL SUPERIMPOSED DEFORMATION

In this section for an arbitrary isotropic incompressible hyperelastic material we give the
fourth order system of ordinary differential equations for the small radial deflection which is
superimposed upon the initial compression (3.1). Although we shall only solve this system
completely for the Varga material it would seen worthwhile noting that for the general material
two simple solutions and an independent first integral can be given.

We suppose that superimposed upon the deformation (3.1) the inner metal cylinder of the
bush is displaced a small distance E uniformly along its length in the direction of e = 0 while the
outer cylinder is held fixed. The displacement boundary conditions at the inner cylinder suggest
we look for solutions of (2.15) and (2.17) of the form

r= feR) + Eu(R) cos e,
0= e+ Ev(R) sin e,
A = Ao(R) +eAteR) cos e,

(4.1)

where u, v and AI are functions of R only and feR) and Ao(R) are assumed to be solutions of
(3.2). Moreover in the following we use the subscript zero to denote quantities evaluated at the
initial deformation. The displacement boundary conditions at the inner and outer cylinders now
become

u(A) = 1,

u(B) = 0,

1
v(A) = -- f(A)

v(B) = O.
(4.2)

We remark here that, as is usual in plane stress theory, no displacement boundary conditions are
imposed upon A.

From (2.16) and (4.1) we find on neglecting terms of order E
2 that

1= 10 +EIt cos e,

where II is given by

Also from (2.8), (4.1h and (4.3) we obtain

4> = 4>0 + E4>1 cos e,
1/1 = 1/10+ EI/II cos e,

where 4>1 and 1/11 are given by

"'-I~ A~'1'1- 1 81
0
+ 1 8A

o
'

(4.3)

(4.4)

(4.5)

(4.6)
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We remind the reader that Aoand 10 are assumed to be given by (3.2)1 and (3.2)2 respectively while
q,o and tPo are the response coefficients evaluated at the initial deformation (l1) and defined by
(2.8).

If we use (4.1) and (4.5) in the condition of incompressibility (2.15) and the equations of
eqilibrium (2.17) then we obtain on equating terms of order fE,

Moreover from (2.19) we find that up to first order in E the force F is given by

F == - 2hofE7T[t/fd +RtPo(u - Iv)' +Rq,tf/].

(4.7)

(4.8)

Assuming that I and Ao are known functions the eqns (4.7) constitute three equations for the
determination of u. v and AI. In the following section we solve this system completely for the
special case of the Varga material (1.1).

For the general material we note the following linearly independent solutions,

u == 1,
1 AI=O,v=--
f'

(4.9)
u::; f', 1

Al=A~.v =-R'

If we denote material and spatial rectangular cartesian coordinates by (X, Y, Z) and (x, y, z)
respectively then the reader can easily verify that the above two solutions arise from the
invariance of the condition of incompressibility and the equations of equilibrium under the
respective translations

(x, y, z}-+(x + f, Y. z).

(X, y, Z) -+ (X +f, Y, Z).

In addition to the solutions (4.9) we have the independent first integral

tltJ+R4JJ..u - Iv)' +RtPlf' =constant,

(4.10)

(4.11)

which can be deduced directly from (4.8) or from (4.7)2 and (4.7)3' The solutions (4.9) and the first
integtal (4.11) are in principle sufficient to reduce tbe fourth order system (4.7) to one of first
order. However, for the general material there appears to be no simple way of uncoupling (4.7). In
the remainder of the paper we shall only consider (4.7) for the Varga material for which a further
integration can be effected.

5. SOLUTIONS FOR THE VARGA MATERIAL

For the Varga material the initial deformation is given by (3.13) so that f and Ao in the
equations of the previous section are given by

(5.1)

where a and ~ are constants which we assume to be determined by the initial and final radii of
the tube before and after precompression. From (3.10), (4.1)3. (4.5) and (5.1h we obtain the
relation

(5.2)
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If we use (4.4) and the condition of incompressibility (4.7)1 then from (4.6)1 we can deduce

(5.3)

where we have used (3.9)1 and the expression (3.12) for 4>0' If now in (4.11) we set the constant
equal to 'YIK where 'Yl is an arbitrary constant and K = Pia then from (4.11), (5.2) and (5.3) we
obtain

(5.4)

From the above equations and noting from (3.10) that "'~ = 4>~ we can show that (4.7h can be
integrated to give

(5.5)

where 1'2 is a further arbitrary constant. From this equation we see that (5.4) becomes

(5.6)

Thus A,(R) is known and from (4.7)1> (5.1)1 and (5.6) we have

Substitution of (5.7) into (5.5) yields a first order differential equation in u' which can be readily
integrated.

Omitting the details the final result is

_ 1'2 a 1/2{R 2+ KR log [R +(R 2+K)1/2]}
4 (R 2 +K)112

1'3R (5.8)

where 13 and 14 are integration constants. From (5.7) and (5.8) we find that the solution for v is
given by

2 1/2 (R) 1'1 2{ (R
2

- K) K I [R (R 2 K)II2]}#La v =-16 a (R2+K)1/2+ R og + +

_ 'Y2 2{(R 2+2K) _ K log [R + (R 2 +K)1I2]}
16 a R (R 2 +K)1/2

+J'..!. a 1/2{3R - K log [R +(R 2+K)112]}
4 (R 2+K)1/2

+ ~2 al/2{3(R 2 + K)1/2+: log [R + (R 2+K)1/2]}

(5.9)
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We note that the solutions associated with the constants 13 and I" are those given by (4.9)2 and
(4.9)1 respectively. In the following section we use the above solutions to formulate the radial
load-deflection relation.

6. RADIAL LOAD-DEFLECTION RELATION FOR THE VARGA MATERIAL

In terms of the constant 'YI we have from (4.8) that the force F required to maintain the radial
deflection is given by

(6.1)

From the boundary conditions (4.2) and the solutions (5.8) and (5.9) we obtain, after a long but
straightforward calculation to determine 'Ylo the following relation,

F = 1281T#£EK2ho[Cd la 2+ Cd2a 1/2]
[illa"+il2aS/2+il3a] ,

(6.2)

Cdl = [(B 2+ K)2 - (A 2+K)2],

Cd2 = 2[u(B) - u(A)] + 8[B(B2+ K)3/2_ A(A2+ K)3/2],

ill = 4(B"- A ")[(B 2+ K)2_(A 2+ K)2]_[u(B) - u(A)f,

il2= 32[B2(B 2+ K) - A 2(A 2+ K)][u(B) - u(A) + B(B2+ K)1/2(2B 2+ K)

- A (A 2+ K)1/2(2A 2+ K)] + 32K2(B2- A 2)[B(B2+ K)1/2 - A (A 2+ K)1/2],

il3= 16[u(B) - u(A) + 4B3(B2+ K)1/2_4A 3(A 2+ K)1/2][U(B) - u(A)

+ 4B(B2+ K)3/2 - 4A (A 2+ K)3/2] - 64[B2(B 2+ K) - A 2(A 2+ K)f, (6.3)

where the function u(R) is defined by

u(R) =K 210g [R + (R 2+ K)1/2] - R(R 2+ K)I/2(2R 2+ K). (6.4)

For the Varga material (6.2), (6.3) and (6.4) constitute the "exact" plane stress radial load
deflection relation for thin precompressed rubber bushes. If we set a = 1 and let K tend to zero
then we obtain from the above equations the well known linear plane stress relation (see for
example [1])

1601Tl£Eho(A 2 +B 2)
Fo = [25(A 2+ B 2) log (BIA) -9(B2- A~]' (6.5)

where Fo is the force required to maintain the deformation for no precompression.
In the following section we illustrate (6.2) with typical numerical values of FIFo which we

compare with the corresponding ratios for long precompressed cylindrical bushes. For the case
of long bushes the initial compression is given by (3.13) (see [2] and [3]). From the general
formula given in [3] for the arbitrary isotropic incompressible hyperelastic material we can show
that for the Varga material we have

(6.6)

while for the neo-Hookean material we have

(6.7)

where L is the original length of the long rubber tube before precompression and Cdlo Cd2, ill and
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0 3 are as defined above. We remark that (6.7) is given explicitly in [2]. For completeness we note
that the standard linear plane strain formula for radial deflections of long bushes, that is (see [1»

*_ 41TiLEL(A 2 +B2)
F o - [(A 2+ B 2)log(BIA)-(B2- A 2»)' (6.8)

and we note that this result can be obtained from both of (6.6) and (6.7) in the limit as K tends to
zero and a = 1.

7. NUMERICAL RESULTS

The principal stretches of the initial deformation (3.13) are given by

(7.1)

where K = (31a. For a and K positive the maximum values of these stretches are given by

a 1/2(A 2 +K)I/2
'\2 max = A '

1
'\3 max =-.

a
(7.2)

In order to illustrate the results of the previous section we suppose that the precompression is
effected by increasing the internal radius A to a and leaving the external radius B unaltered. If
we define ~ and 'Y by

(7.3)

then since a ~ A and B > a we have

I ~ 'Y < 8.

Moreover the constants a and K are given by

(7.4)

(7.5)

Typical numerical values of FIFo, FtlF~ and F'MF~ are given in Tables I(a), l(b) and I(c) for
various values of 'Y for which the maximum principal stretches as given by (7.2) are less than 2.

The first column of Table 1 gives the value of 'Y while the second column gives the value of
FIFo which is obtained from (6.2) and (6.5). The last two columns give the ratios FtlF~ and
F'MFW which are obtained from (6.6), (6.7) and (6.8). These last two columns are included, firstly
to contrast the "compression factor" for the plane stress and plane strain radial load-deflection
relations and secondly to give some indication of the differences between the neo-Hookean and
Varga theories over this range of deformation. For the data of Table l(c) we show in Fig. 1 the
overall variation of the ratios for the range of deformation having maximum principal stretch less
than 2.2.

As far as engineering purposes are concerned these numerical results indicate that the
"compression factor" for short bushes is very nearly that for long bushes provided the maximum
values of the stretches given by (7.2) do not exceed 2. Moreover in assessing the "compression
factor" for bushes of finite length a reasonable approximation would be to take some value which
is intermediate to the plane stress and plane strain values.

8. CONCLUSION

For cylindrical rubber bush mountings which are precompressed by a large uniform radial
inflation we have derived the plane stress load-deflection relation (6.2) for small superimposed
radial deflections for the particular case of the isotropic incompressible Varga material. This
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Table I. Values of FIFo. nlF! and FtIF! for various
values of aIA

(a) A =1.0, B =1.5

alA FIFo FUn F~F~

1.05 1.31 1.33 1.28
1.10 1.77 1.81 1.67
1.15 2.51 2.56 2.26
1.20 3.78 3.76 3.19
1.25 6.20 5.88 4.75

(b) A = 1.0, B =2.0

alA FIFo FUF~ F~F~

1.1 1.29 1.34 1.30
1.2 1.72 1.84 1.73
1.3 2.40 2.60 2.38
1.4 3.56 3.86 3.42
1.5 5.74 6.06 5.21

(c) A = 1.0, B =3.0

alA FIFo FUn F~F~

1.2 1.27 1.34 1.32
1.4 1.66 1.84 1.79
1.6 2.29 2.61 2.51
1.8 3.34 3.88 3.70
2.0 5.30 6.11 5.78

10.0

9.0

B.O

70

60

5.0 FiFo

40

30

20

10
10

Fig. 1. Variation of the ratios FIFo, FUF~ and F~F~ for values of alA for which the maximum principal
stretch of (3.13) is less than 2.2 and A =1.00nd B =3.0.

material has strain-energy function given by (1.1) and has been shown by previous authors to be a
valid prototype for rubber provided the maximum principal stretch of the deformation does not
exceed 2. Within this range of deformation this material is in reasonable agreement with the
neo-Hookean material which is the standard prototype for rubber. The relation (6.2) together with
results given in [1-3J enables at least some assessment to be made of the likely behaviour of
precompressed bushes of finite length. Numerical results indicate that the "compression factors"
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for plane stress and plane strain radialload-deftection relations are as far as engineering purposes
are concerned, very nearly the same.
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